
Best Practices
Of Big Data
Implementation

elinext.com

How we struggled
with big data
implementation.

Part 1.

kafka hadoop
distributed
file system

database

spark spark

mail server

database

other data
storage

search
result

Big Data frameworks
and technologies stack
that we suggest.

Part 3.
Apache Hadoop is a framework for
running applications on large cluster
built of commodity hardware. Indeed,
Hadoop is the standard for big data
processing. The product we decided
to exploit in our project of is Hadoop
distributed file system (HDFS) that
stores data on the compute nodes,
providing very high aggregate
bandwidth across the cluster.

Apache Spark is a fast and general
engine for large-scale data
processing which is all-compatible
with Hadoop. We preferred Spark to
MapReduce for our project’s
purposes because of higher speed of
big data processing and ease of
deployment. Moreover, Spark allows
for iterative machine learning
algorithms with each iteration
contributing to the overall results.

Apache Kafka is a distributed system
used for building real-time data
pipelines and streaming apps used
for processing logs, metrics, and
collections. We have chosen this
technology for its horizontal
scalability, fault-tolerance, and high
speed. Within our project, Kafka was
used for data retrieval from the mail
servers. The data received was
consequently put into Hadoop
distributed file system for storage.

Our choice of MongoDB was
determined by its well-supported
integration with Hadoop and its
aggregation framework. It helped
us store data in convenient form
for processing.

Cassandra caught our interest as a
possible replacement of MongoDB
within our project because of its
support for dynamic columns and
distributed counters. We also were
impressed by its scalability and
reasonable costs of ownership.

Both search platforms are built on top of Apache Java library Lucene, so
many of their functionalities and their search capabilities are relatively
similar. However, Elasticsearch is considered to be easier to use and better
for analytical queries and distributed indexing, while Solr is well-oriented in
everything connected with text search and is popular for being consistently
documented.

Challenge
Although the solution worked well for most users, some major customers had several
millions of devices. The system was launched in 1998, so it had to store the detailed
statistic for at least 10 years to compare results and make predictions.

To improve our current implementation of data storing and processing,
we experimented a bit with big data technologies:

According to our implementation plan, the next step was to bring Kafka in our project and
add a search engine (we were thinking about either Elasticsearch or Solr). What is more,
since the project scaled significantly, we were considering to replace MongoDB with
Cassandra for its column-oriented database.

However, our big data experiment was stopped, as the client decided to put the project
on the shelf and engage Elinext dedicated team that worked on this project in building
the product of a similar kind, but with more functionality.

Each device produced around of
data. Some new devices produced much
more information, around , but
let’s take the average of 10 KB for
calculation.

Each device was polled every ,
which made up 10 KB x 60 x 24 =14 MB per
day, or 14 MB *365 = per year.

Assuming the customer had 10 million of
devices, his devices produced around

10 KB

100-300 KB

1 minute

5 GB

48 PB of data per year.

First, we decided to use MongoDB shared cluster instead of single Oracle database.
This allowed client to store much more data, but the performance was almost the
same, because data was collected by single data collector and processed by single
backend. That’s why we also decided to implement Hadoop Distributed File
System (HFDS) for raw data storage and Hadoop’s MapReduce for data processing
to store it in MongoDB.

As a result, we received a system with multiple data collectors installed on several
segments of the network, HDFS, Spark, and MongoDB. We emulated the
monitoring of 4 million of devices and haven’t detected any problem neither in the
performance of the system nor in data storage capabilities. As a comparison, the
initial implementation without Big Data was able to monitor up to 100,000 devices
only, so we can talk about significant system improvement.

After tool research on the market, Hadoop MapReduce was replaced with
Apache Spark, as it was easier to use and allowed running programs faster.

Since this solution had no
capabilities for horizontal
scaling, it was impossible to
work with such amount of data.
To provide customer with the
detailed statistics, we introduced
some limitations on the number
of devices and days. However,
this solution was inconvenient
for the customer.

Monitoring Application

Mongo DB Shared Cluster

Network

Frontend hadoop
distributed file

system

Backend

mongo db note mongo db note mongo db note mongo db note

spark
Data

Collectors

Monitoring Application Network

Frontend Oracle Database

Backend

Data Collector

The system worked in the following way:

Data Collector polled the devices
via SNMP (Simple Network
Management Protocol) and
stored raw data in Oracle DB. 1 2

Then backend processed raw
data and transformed it into
the format that allowed for
better big data analytics.

3
As a result, the customer was able to discover devices in the network using IP
range, view statistic for selected devices for any period, build reports, charts,
set up alarms and manage multi-vendor networks, systems and databases.

A lot of questions may arise when
coming up with a big data strategy.
The answers depend on the amount
and type of data and the goals you
want to achieve with its exploration.
We asked our IT Services Director
Alexey Trigolos to share the general
questions appearing on the way of
big data implementation.

Top questions you should
ask before starting big
data application.

?
?

??

Part 2.

1. Do you really need big data?

Having once used big data related technologies, you may be tempted to use
them everywhere, in each project. Don’t do this. Choose only most suitable
stack of technologies required for your solution. I have seen several CRUD-like
application, where the customer or developer switched to using HDFS, Spark,
etc. hoping to get more productive and flexible solution. As you can guess, he
didn’t get anything but a headache.

2. How to choose right technologies or frameworks?

The world of big data offers a lot of frameworks: HDFS, Spark, Flink, Mahout,
Tez, Storm, Sanza, etc. You need to investigate what problems you need to
solve and choose most suitable and modern frameworks that are efficient,
economical and meet your business requirements.

3. What resources are needed for your environment?

Unlike ‘classic’ applications, big data application requires much more
resources, for horizontally scalable database, distributed file system,
distributed computing, data-mining, etc. In most cases, cloud-based solution
will be preferable, otherwise take care of maintenance and support of your
environment.

4. What is your data?

In big data application, the data is almost always unstructured or semi-
structured. Furthermore, most of your data is useless and the only relatively
small proportion contains useful information. It’s required to analyze what
information you need to operate, what internal structure it may have and
how to organize the data for the further processing and computing.

5. How to take care of data security?

Due to distributed architecture of your application, the data will be walking
between nodes of your application. Many consider storing big data
dangerous, as it can contain sensitive information like emails, payment card
numbers, or other personal information. The communication channels inside
your distributed application should be secured to fit safety policies of your
customers.

The whole story about big data
implementation started with an ongoing
project. Our team was working on a project
for monitoring a range of devices: switches,
routers, computers and more. The main goal
of this system was to provide businesses
with advanced real-time performance
reporting by collecting and analyzing KPI
across IT infrastructure. The project was
based on classic old-school architecture,
with Oracle Database used as a data storage.

https://www.elinext.com/

